Cell-free DNA and NGS

Our expert solutions include a complete portfolio covering sample collection and extraction, next-generation sequencing (NGS) and analysis and interpretation. We aim to provide the highest quality tools to equip you to obtain invaluable insights from your liquid biopsy samples.

Research use only workflow

Sample to Insight

Blood collection and stabllization

PAXgene Blood ccfDNA Tube (cat. no. varies)

- Cell-free DNA stabilization with non-crosslinking chemistry
- Suitable for a wide range of downstream applications
- Sample transport for up to 7 days at 2–30°C or up to 1 day at 37°C
- Standardized processing of samples with integrated isolation

Cell-free DNA (ccfDNA) preparation

Manual

QIAamp MinElute ccfDNA Mini Kit cat. no. 55204; 1–4 ml plasma

QIAamp MinElute ccfDNA Midi Kit cat. no. 55284; 4–10 ml plasma

- High concentrations of ccfDNA with low (20 µl) elution volumes
- Low frequency variant detection with scalable sample input volumes (1–10 ml)
- High yields similar to the gold standard
- Automatable on QIAcube[®]

Eluate (µl)

Processing time

QIAcube cat. no. 9001882

- Automation of the spin-column procedure
- All contained within a single square meter

Yield (ng DNA)

Figure 1. Higher DNA yields with the QIAamp MinElute ccfDNA Kit. Total yield of a 66 bp ccfDNA fragment from 4 ml of plasma is shown using the QIAamp MinElute ccfDNA Kit compared with 5 other commercially available kits. Results show that the QIAamp MinElute ccfDNA Kit provided higher DNA yield than competitor solutions.

Automated on EZ1 Advanced XL – up to 14 samples

EZ1 ccfDNA Mini Kit cat. no. 954134; 1–4 ml plasma

EZ1 ccfDNA Midi Kit cat. no. 954154; 4–10 ml plasma

EZ1 Advanced XL System cat. no. 9001874

- Convenient automation
- Standardized yields and efficient ccfDNA recovery
- Effortless data management and secure user environments

ccfDNA preparation on QIAsymphony SP for research applications

ccfDNA preparation on QIAsymphony SP for diagnostic applicatons

<90 min for

24 samples

<6 h for 96 samples

Up to 96 samples

QIAsymphony PAXgene Blood ccfDNA Kit (192) cat. no. 768536

- Optimized isolation chemistry for plasma generated in PAXgene Blood ccfDNA Tubes
- Option for direct primary tube processing of PAXgene Blood ccfDNA Tubes

QIAsymphony SP

cat. no. 9001297; 2.4 ml or 4.8 ml plasma

- Fully automated sample preparation
- Prefilled, ready-to-use reagent cartridges
- Bar code reader for reagents and sample tracking

QIAsymphony DSP Circulating DNA Kit cat. no. 937556; 2 ml or 4 ml plasma or urine

60 µl -

Up to 96 samples

- Automated purification of ccfDNA from human plasma and urine
- Workflow compatibility with a wide range of blood collection tubes

Cell-free DNA (ccfDNA) sequencing

Whole genome/whole exome sequencing

QlAseq cfDNA Library Kit cat. no. 180015 For use on Illumina® sequencers

QIAseq cfDNA Library T Kit cat. no. 1102308 For use on lon Torrent[™] Sequencers

- Superior conversion of ccfDNA through highly efficient ligation chemistry
- NGS library preparation optimized for variable cell-free DNA input amounts

Targeted DNA panel sequencing

QIAseq Targeted DNA Panels

A wide range of catalogued, extended, booster or custom DNA panels

- Low frequency variant detection with unique molecular indices and single primer extension
- The Human Comprehensive Cancer QIAseq DNA Panel – a large gene panel covering 275 genes for identifying the major mutations in each tumor, plus potentially novel molecular mechanisms

Data analysis and interpretation

Software solutions built for biologists and configured specifically to help you detect and interpret variants

New release

Biomedical Genomics Workbench 5

- Accurate variant detection at 1% minor allele frequency (MAF) or lower
- Identification of multiple types of variation, from single nucleotide to copy number to insertions and deletions
- Pre-configured workflows for push-button analysis of QIAseq Targeted DNA Panels

Ingenuity Variant Analysis

- Cancer-driver variations uncovered with more confidence
- Powered by the world's most comprehensive knowledge base for genome interpretation
- Intuitive options for filtering variants like biological context and statistical association

Methylation analysis by sequencing

QIAseq Methyl Library Kit (24) cat. no. 180502

- High-quality libraries
- Low DNA input requirements

Figure 2. High mapping rate for accurate methylation analysis from low input ccfDNA. ccfDNA was purified using the QIAamp MinElute ccfDNA Kit. Purified ccfDNA from different donors was processed through the QIAseq Methyl WGBS workflow. ccfDNA was converted using the EpiTect fast kit. Total converted DNA was used to prepare libraries using the QIAseq Methyl DNA library kit. Libraries were sequenced on MiSeq[®]. Data was analyzed using the CLC Genomics Workbench Bisulfite sequencing Plugin. A. High-quality libraries can be generated as evidenced by the high percentage of mapped reads, and the low percentage of duplicate reads. B. Accurate methylation analysis can be achieved across 4 donors.

PCR-based biomarker verification

Real-time PCR

QuantiNova® Probe PCR Kit cat. no. 208252

QuantiNova SYBR® Green PCR Kit cat. no. 208052

QuantiNova Multiplex PCR Kits cat. no. 208452)

- Highly sensitive, specific, real-time PCR
- For probe-based or SYBR Green-based PCR
- Singleplex or multiplex

Endpoint PCR

QIAGEN Multiplex PCR Kits cat. no. 206143

 Highly specific and sensitive multiplex PCR without optimization requirements

QIAGEN AllTaq PCR Kits cat. no. 203123

 Reliability for all routine PCR applications and assays with integrated safety and convenience features

Nucleic acid extraction

GeneReader NGS System

Complete Sample to Insight® workflow takes you all the way to actionable insights

GeneRead QIAact Lung DNA UMI Panel Kit cat. no. 181930

- One-stop NGS assay solution covering known actionable single nucleotide variants (SNV), InDels and CNVs
- Designed to detect 549 hotspot variants at 335 positions and 5 CNVs from 19 genes of known relevance to clinical lung cancer research

GeneReader Platform

cat. no. 9002312

- NGS instrument
- Fully embedded into the Sample to Insight GeneReader NGS System

QCI Analyze

cat. no. 188001

 Bioinformatic complement to the GeneReader NGS System for variant identification

QCI Interpret

cat. no. 830371

- Advanced software enterprise
- Specifically designed for clinical-grade genomic testing laboratories
- Provides evidence-based clinical decision support solutions
- Enables interpretation and reporting of NGS cancer test results to your oncologists with confidence, accuracy and clinical utility

Gain additional insights from your liquid biopsy ccfDNA samples by visiting www.qiagen.com/ccfdna

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at **www.qiagen.com** or can be requested from QIAGEN Technical Services or your local distributor.

Trademarks: QIAGEN®, Sample to Insight®, QIAamp®, QIAcube®, QIAseq®, QIAsymphony®, EZ1®, GeneRead[™], MinElute[®], QuantiNova[®] (QIAGEN Group); PAXgene[®] (PreAnalytiX GmbH); GeneReader[™] (Intelligent Bio-Systems, Inc.); Illlumina[®], MiSeq[®] (Illumina, Inc.); Ion Torrent[®], SYBR[®] (Thermo Fisher Scientific Inc.). PROM-11101-001 03/18 1107458 © 2018 QIAGEN, all rights reserved.

Ordering www.qiagen.com/shop | Technical Support support.qiagen.com | Website www.qiagen.com

Identify the PIK3CA mutations that make a difference in breast cancer

The *therascreen*[®] PIK3CA Kit is the first FDA-approved and clinically validated companion diagnostic test for use as an aid in identification of breast cancer patients who could benefit from treatment with PIQRAY[®] (alpelisib)

종양 전문의가 신뢰할 수 있는 결과를 제공합니다.

therascreen PIK3CA RGQ PCR Kit (therascreen PIK3CA 검사)는 진행성/전이성 유방암 환자들 중 에스트로겐 수용체 길 항제인 풀베스트란트(Furvestrant)와 병용하여 PI3K(Phosphatidylinositol-3-Kinase) α 특이적 억제제 PIQRAY(alpelsib) 치료 가 가능한 환자를 선별하기 위한 FDA가 승인한 최초의 동반진단(CDx) 검사입니다. 이 검사는 진행성/전이성 유방암 환 자에서 채취한 FFPE 종양 조직 또는 K₂EDTA 항응고 처리 혈장 검체에서 분리된 유전체 DNA에서 특정 PIK3CA 돌연변이 의 검출을 기반으로 합니다. 이 빠르고 정확한 검사는 자동화된 검사 결과 보고와 함께 간단하고 신뢰할 수 있는 검사 과 정의 일부입니다. 해당 검사는 분석적 타당성 및 임상적 타당성이 입증되었으며, 독립적인 SOLAR-1 임상시험을 통해 총 572명의 대상자들에서 평가된 알펠리십(alpelisib)에 대한 양성 반응을 예측하는 것으로 알려진 11개의 임상적으로 작용 가능한 돌연변이를 검출할 수 있었습니다 (1).

SOLAR-1: PIK3CA 돌연변이 상태에 따른 PIQRAY의 반응

SOLAR-1임상시험 (CBYL719C2301)은 아로마타제(aromatase) 억제제 치료 중 혹은 치료 이후에 진행된 호르몬 수용체 양성, HER2 음성인 진행성/전이성 유방암이 있는 남성 및 폐경 후 여성을 대상으로 PIQRAY+풀베스트란트(Fulvestrant) 및 위약+풀베스트란트, 두 그룹으로 나누어 각 그룹별 치료 효과를 비교한 무작위 배정, 이중 눈가림, 위약 대조 및 다 국적 다기관 제 3상 임상시험입니다. 임상시험 대상자들은 PIQRAY 300mg과 풀베스트란트 또는 위약과 풀베스트란트 를 투여받도록 1:1 비율로 무작위배정되었습니다. 1차 평가변수는 연구자의 평가에 기반하여 RECIST v1.1 기준을 사용 한 무진행 생존 (PFS)이었습니다 (1).

Figure 1. Kaplan-Meier plot of PFS by treatment in the PIK3CA mutant-positive patients randomized in SOLAR-1 (FFPE tissue samples) (1).

SOLAR-1은 종양에 특정 *PIK3CA* 돌연변이가 있는 대상자에서 위약과 풀베스트란트를 사용하여 치료한 그룹 대비 PIQRAY 와 풀베스트란트를 사용해 치료한 그룹의 PFS 중앙값은 임상적으로 유의미한 5.3개월(전체 11개월) 연장했으며 질병 진 행 또는 사망 위험이 약 35% 감소하는 것으로 나타냈습니다 (그림 1). *therascreen* PIK3CA RGQ PCR Kit에 의해 확인된 동반진단 *PIK3CA* 돌연변이 양성 대상자 하위 그룹 (347명의 대상자, 포르말린 고정 파라핀에 포매된 조직 검체, FFPET) 의 분석에 따르면 PIQRAY와 풀베스트란트를 투여받은 대상자에서 위약과 풀베스트란트를 투여받은 대상자보다 질병 진 행 또는 사망 위험이 36% 더 낮은 것으로 입증되었습니다 (HR = 0.64; 95% CI: 0.48, 0.85) (2).

대조적으로 *therascreen* PIK3CA RGQ PCR Kit 검사 결과 음성 그룹에서도 PFS가 추정되었으며 이러한 대상자들에게서 PFS 이점은 관찰되지 않았습니다 (HR = 0.85; 95% CI: 0.58, 1.25).

따라서 PIQRAY와 풀베스트란트 병행 요법으로 치료할 환자들을 선별할 때 *PIK3CA* 돌연변이 상태를 확인하는 것이 중 요합니다. 작용 가능한 *PIK3CA* 돌연변이가 있는 종양을 가진 환자만이 임상적으로 의미 있는 PFS 증가를 경험할 가능 성이 있습니다.

Sample to Insight®의 완전한 검사 과정

간단한 검사 작업 과정은 포르말린 고정 파라핀 포매(FFPE) 유방 종양 조직(QIAamp[®] DSP DNA FFPE Kit 사용) 또는 K₂EDTA 항응고 처리 혈장 (QIAamp DSP Circulating Nucleic Acid Kit 사용)에서의 수동으로 DNA 추출로 시작하여 민감 한 real-time PCR인 Rotor-Rotor-Gene[®] Q MDx (US) 기기 및 Rotor-Gene AssayManager[®] 소프트웨어를 사용한 자동 데이 터 분석으로 이어집니다 (그림 2).

therascreen PIK3CA 검사는 PIK3CA 유전자의 엑손 7, 9 및 20에서 총 11개 돌연변이(엑손 7: C420R; 엑손 9: E542K, E545A, E545D[1635G>T 한정], E545G, E545K, Q546E, Q546R 및 엑손 20: H1047L, H1047R, H1047Y)를 검출합니다.

Ordering Information

Product	Contents	Cat. no.
therascreen PIK3CA RGQ PCR Kit (24)	For 24 reactions: Control Assay, 6 Assays, Positive Control, <i>Taq</i> DNA Polymerase, Water for NTC, and Water for Sample Dilution	873121
Related products		
QIAamp DSP DNA FFPE Tissue Kit (50)	For 50 DNA preps: QIAamp MinElute® columns, Proteinase K, Buffers, and Collection Tubes (2 ml)	60404
QIAamp DSP Circulating Nucleic Acid Kit (50)	For 50 DNA preps: QIAamp MinElute columns, Proteinase K, Buffers, and Collection Tubes (2 ml)	61504
Rotor-Gene Q MDx (US) System	Real-time PCR cycler with 6 channels, laptop computer, software, accessories, 1-year warranty on parts and labor, installation and training	9002036

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at **www.qiagen.com** or can be requested from QIAGEN Technical Services (or your local distributor).

References

1. Andre, F. et al. (2019) Alpelisib for PIK3CA-Mutated, Hormone Receptor–Positive Advanced Breast Cancer. N. Engl. J. Med. 380, 1929.

2. therascreen PIK3CA RGQ PCR Kit Instructions for Use (Handbook). May 2019. Version 1, Revision 1.

Contact QIAGEN today to discover more about personalizing healthcare! Learn more at **www.qiagen.com/pik3ca**

Trademarks: QIAGEN®, Sample to Insigh®, MinElute®, Rotor-Gene®, Rotor-Gene AssayManager®, therascreen® (QIAGEN Group); PIQRAY® (Novartis AG). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law. 7125724 PROM-13691-003 © 2021 QIAGEN, all rights reserved.

퀴아젠코리아

서울시 중구 한강대로 416번지 서울스퀘어 5층 주문문의 080-000-7146 orders-KR@qiagen.com | 학술문의 080-000-7145 techservice-KR@qiagen.com | Website www.qiagen.com Single consolidated NGS workflow with DNA + RNA

QIAseq[®] Pan Cancer Multimodal cuts user interventions by 50%

Challenges of pan cancer profiling

Pan cancer studies focus on profiling of relevant DNA and RNA alterations found across multiple cancers, as well as assessment of tumor mutational burden (TMB) and microsatellite instability (MSI) for solid tumors and heme malignancies. Recent advances in NGS chemistries, platforms and bioinformatics pipelines have empowered users to efficiently interrogate DNA and RNA alterations in biological samples. Current approaches, however, require the use of 2 separate workflows to prepare libraries from separate DNA and RNA isolates. Limitations of such approaches include:

- Precious samples must be split to extract DNA and RNA in separate sample prep protocols
- Large amounts of sample material are required to generate sufficient amounts of input DNA and RNA for multiple workflows
- Workflow has added complexity of deriving integrated insights from results of different technical approaches, each with its own innate bias
- Separate workflows result in inefficient use of resources and long turnaround times

Streamlined, consolidated one-day workflow

To overcome the limitations associated with current approaches, the QIAseq Pan Cancer Multimodal panel starts with total nucleic acids (or DNA + RNA) and prepares targeted DNA and RNA libraries containing Unique Molecular indices (UMIs) for Illumina[®] platforms using a one-day, consolidated workflow (see Figure 1).

The QIAseq Pan Cancer Multimodal panel delivers:

- The ONLY single consolidated workflow for DNA + RNA library prep using total nucleic acids as input
- Operational efficiency with a 50% reduction in user interventions
- Confident detection of low-frequency variants with UMIs
- Reduced index hopping with Unique Dual Indices (UDIs)
- Comprehensive coverage of known and novel fusions as well as all relevant alterations
- 523 DNA gene targets, 56 RNA fusion gene targets and 26 microsatellite instability MSI loci (Tables 1–3)

Figure 1. Extract more information, while reducing sample, time and cost with a simple, one-day workflow. This flexible solution enables the construction of libraries compatible with Illumina platforms from as little as 10 ng total nucleic acid isolated from a wide range of samples. The data analysis pipelines in CLC Genomics Workbench translate raw sequence data in FASTQ format to DNA and RNA variant files (VCFs), which can be further interpreted for biological significance through QCI® Interpret for QIAseq.

Confidently interpret NGS variants

Our software workflow makes it easy to extract, identify the variants of interest and deliver a comprehensive variant interpretation from your raw NGS data. The industry leading genomic analysis and interpretation software solutions, CLC Genomic Workbench and QCI Interpret for QIAseq, provide you with a comprehensive report to support your workflow, including variant classification, details on variant function, literature references, drug labels, drug interactions and relevant clinical trials. Accelerate your clinical research and go from raw NGS data to detailed and trusted insights in minutes – not hours.

Key differentiators

- The ONLY single consolidated workflow for DNA + RNA library prep using total nucleic acids as input
- Cuts user interventions by 50%
- Confident detection of low-frequency variants
- Detection of both known and novel fusions
- Increased target coverage of all relevant alterations

Table 1. 523 DNA gene targets (Part 1)

Genes targ	Genes targeted for SNP, InDel, and copy number variation (CNV) detection by DNA sequencing										
ABLI	ASXL1	BCOR	CCND2	CENPA	DAXX	EP300	ETV5	FGF19	FOXA1	GPR124	HIST1H3I
ABL2	ASXL2	BCORL1	CCND3	CHD2	DCUNIDI	EPCAM	ETV6	FGF2	FOXL2	GPS2	HIST1H3J
ACVR1	ATM	BCR	CCNEI	CHD4	DDR2	EPHA3	EWSR1	FGF23	FOXO1	GREM1	HIST2H3A
ACVR1B	ATR	BIRC3	CD274	CHEK1	DDX41	EPHA5	EZH2	FGF3	FOXP1	GRIN2A	HIST2H3C
AKT1	ATRX	BLM	CD276	CHEK2	DHX15	EPHA7	FAM175A	FGF4	FRS2	GRM3	HIST2H3D
AKT2	AURKA	BMPRIA	CD74	CIC	DICER1	EPHB1	FAM46C	FGF5	FUBP1	GSK3B	HIST3H3
AKT3	AURKB	BRAF	CD79A	CREBBP	DIS3	ERBB2	FANCA	FGF6	FYN	H3F3A	HLA-A
ALK	AXINI	BRCA1	CD79B	CRKL	DNAJBI	ERBB3	FANCC	FGF7	GABRA6	H3F3B	HLA-B
ALOX12B	AXIN2	BRCA2	CDC73	CRLF2	DNMTI	ERBB4	FANCD2	FGF8	GATA1	H3F3C	HLA-C
AMER1	AXL	BRD4	CDH1	CSF1R	DNMT3A	ERCC1	FANCE	FGF9	GATA2	HGF	HNF1A
ANKRDII	B2M	BRIP1	CDK12	CSF3R	DNMT3B	ERCC2	FANCF	FGFR1	GATA3	HIST1H1C	HNRNPK
ANKRD26	BAP1	BTG1	CDK4	CSNK1A1	DOTIL	ERCC3	FANCG	FGFR2	GATA4	HIST1H2BD	HOXB13
APC	BARD1	BTK	CDK6	CTCF	E2F3	ERCC4	FANCI	FGFR3	GATA6	HIST1H3A	HRAS
AR	BBC3	C11orf30	CDK8	CTLA4	EED	ERCC5	FANCL	FGFR4	GEN1	HIST1H3B	HSD3B1
ARAF	BCL10	CALR	CDKNIA	CTNNAI	EGFL7	ERG	FAS	FH	GID4	HIST1H3C	HSP90AA1
ARFRP1	BCL2	CARD11	CDKN1B	CTNNB1	EGFR	ERRF11	FAT1	FLCN	GLI1	HIST1H3D	ICOSLG
ARID1A	BCL2L1	CASP8	CDKN2A	CUL3	EIF1AX	ESR1	FBXW7	FLI1	GNA11	HIST1H3E	ID3
ARID1B	BCL2L11	CBFB	CDKN2B	CUXI	EIF4A2	ETS1	FGF1	FLT1	GNA13	HIST1H3F	IDH1
ARID2	BCL2L2	CBL	CDKN2C	CXCR4	EIF4E	ETV1	FGF10	FLT3	GNAQ	HIST1H3G	IDH2
ARID5B	BCL6	CCND1	CEBPA	CYLD	EML4	ETV4	FGF14	FLT4	GNAS	HIST1H3H	IFNGRI
IGF1	KAT6A	LRP1B	MEF2B	MYD88	NSD1	PDGFRB	PMS1	PTPRS	REL	SDHD	SOX10
IGF1R	KDM5A	LYN	MENI	MYOD1	NTRKI	PDK1	PMS2	PTPRT	RET	SETBP1	SOX17

Table 2. 56 RNA fusion gene targets

Genes targeted for fusion, exon skipping, and alternatively spliced variant detection by RNA sequencing											
ABLI	BCL2	CSF1R	ESR1	EWSR1	FLI1	KIF5B	MSH2	NRG1	PAX3	<i>РІКЗСА</i>	ROSI
AKT3	BRAF	EGFR	ETS1	FGFR1	FLT1	KIT	МҮС	NTRK1	PAX7	PPARG	RPS6KB1
ALK	BRCAI	EML4	ETV1	FGFR2	FLT3	KMT2A	NOTCHI	NTRK2	PDGFRA	RAF1	TMPRSS2
AR	BRCA2	ERBB2	ETV4	FGFR3	JAK2	MET	NOTCH2	NTRK3	PDGFRB	RET	TP53
AXL	CDK4	ERG	ETV5	FGFR4	KDR	MLLT3	NOTCH3				

Table 1. 523 DNA gene targets (Part 2)

Genes targeted for SNP, InDel, and copy number variation (CNV) detection by DNA sequencing											
IGF2	KDM5C	LZTR1	MET	NAB2	NTRK2	PDPK1	PNRC1	QKI	RFWD2	SETD2	SOX2
ІКВКЕ	KDM6A	MAGI2	MGA	NBN	NTRK3	PGR	POLD1	RAB35	RHEB	SF3B1	SOX9
IKZF1	KDR	MALTI	MITF	NCOA3	NUP93	PHF6	POLE	RAC1	RHOA	SH2B3	SPEN
ILIO	KEAP1	MAP2K1	MLH1	NCORI	NUTM1	PHOX2B	PPARG	RAD21	RICTOR	SH2D1A	SPOP
IL7R	KEL	MAP2K2	MLLT3	NEGRI	PAK1	РІКЗС2В	PPM1D	RAD50	RIT1	SHQ1	SPTA1
INHA	KIF5B	MAP2K4	MPL	NF1	PAK3	PIK3C2G	PPP2R1A	RAD51	RNF43	SLIT2	SRC
INHBA	KIT	MAP3K1	MRE11A	NF2	PAK7	РІКЗСЗ	PPP2R2A	RAD51B	ROSI	SLX4	SRSF2
INPP4A	KLF4	MAP3K13	MSH2	NFE2L2	PALB2	РІКЗСА	РРР6С	RAD51C	RPS6KA4	SMAD2	STAG1
INPP4B	KLHL6	MAP3K14	MSH3	NFKBIA	PARK2	<i>РІКЗСВ</i>	PRDM1	RAD51D	RPS6KB1	SMAD3	STAG2
INSR	KMT2A	MAP3K4	MSH6	NKX2-1	PARP1	PIK3CD	PREX2	RAD52	RPS6KB2	SMAD4	STAT3
IRF2	KMT2B	MAPK1	MSTI	NKX3-1	PAX3	PIK3CG	PRKARIA	RAD54L	RPTOR	SMARCA4	STAT4
IRF4	KMT2C	МАРКЗ	MSTIR	NOTCHI	PAX5	PIK3R1	PRKCI	RAF1	RUNXI	SMARCB1	STAT5A
IRS1	KMT2D	MAX	MTOR	NOTCH2	PAX7	PIK3R2	PRKDC	RANBP2	RUNXITI	SMARCD1	STAT5B
IRS2	KRAS	MCLI	MUTYH	NOTCH3	PAX8	PIK3R3	PRSS8	RARA	RYBP	SMC1A	STK11
JAK1	LAMPI	MDC1	MYB	NOTCH4	PBRM1	PIM1	PTCH1	RASA1	SDHA	SMC3	STK40
JAK2	LATS1	MDM2	MYC	NPM1	PDCD1	PLCG2	PTEN	RB1	SDHAF2	SMO	SUFU
JAK3	LATS2	MDM4	MYCL	NRAS	PDCD1LG2	PLK2	PTPN11	RBM10	SDHB	SNCAIP	SUZ12
JUN	LMO1	MED12	MYCN	NRG1	PDGFRA	PMAIP1	PTPRD	RECQL4	SDHC	SOCS1	SYK
TAF1	TCF7L2	TET2	TGFBR2	TNFRSF14	TP63	TSC2	VHL	WTI	XRCC2	ZBTB2	ZNF217
ТВХЗ	TERC	TFE3	TMEM127	TOPI	TRAF2	TSHR	VTCNI	XIAP	YAPI	ZBTB7A	ZNF703
TCEB1	TERT	TFRC	TMPRSS2	TOP2A	TRAF7	U2AF1	WISP3	XPO1	YESI	ZFHX3	ZRSR2
TCF3	TET1	TGFBR1	TNFAIP3	TP53	TSC1	VEGFA					

Table 3. 26 MSI loci

Genes targeted for microsatellite length detection by DNA sequencing											
BAT25	BAT40	D17S250	D175787	D18561	D18569	D2S123	D5S107	D7S519	NR21	NR24	D18S35
BAT26	D10S196	D17S588	D18S55	D18S64	D20S100	D3S1029	D5S346	D8S87	NR22	MONO-27	HSP110-T17
BAT34C4	D13S175										

Ordering Information

Product	Contents	Number of samples	Panel variant number	Cat. no.
QIAseq Multimodal HC	Kit containing ALL reagents (except indexes)	12	UHS-5000Z-12	333942
Panel; Pan Cancer Panel	for multimodal (DNA and RNA) sequencing	96	UHS-5000Z-96	333945
QIAseq Multimodal Index I Set A SW (96)	Box containing adapters, enough to process a total of 96 samples, for Multimodal panel sequencing on Illumina platforms using separate enrichment workflows; one of two sets required for multiplexing 96 samples	96	N/A	333985
QIAseq Multimodal Index I Set B SW (96)	Box containing adapters, enough to process a total of 96 samples, for Multimodal panel sequencing on Illumina platforms using separate enrichment workflows; two of two sets required for multiplexing 96 samples	96	N/A	333995

 \bigcirc

Visit **go.qiagen.com/QIAseqmultimodal** and discover how youcan double your NGS insights and free up half of your resources.

The QIAseq Pan Cancer Multimodal Panel is intended for molecular biology applications. This product is not intended for the diagnosis, prevention, or treatment of a disease.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at www.qiagen.com or can be requested from QIAGEN Technical Services or your local distributor.

Trademarks: QIAGEN®, Sample to Insight®, QIAseq®, QCI® (QIAGEN Group); HiSeq®, Illumina® MiniSeq®, MiSeq®, NextSeq®, NovaSeqv (Illumina, Inc.). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law.

Ordering www.qiagen.com/shop | Technical Support support.qiagen.com | Website www.qiagen.com

We've got you covered

With the **QIAseq[®] Human Exome** solution for rare variant detection

>60% of disease-causing mutations are found in protein-coding regions of the genome. Compared to whole genome sequencing (WGS), **whole exome sequencing (WES)** focuses on coding regions, offering powerful variant detection power while **reducing time and expense**.

Uniform sequencing coverage is crucial

Causes of uneven coverage

But is mainly attributed to >65% GC content

CGAC

High GC content reduces the efficiency of:

01 PCR amplification

The **QIAseq Human Exome** solution is optimized to **minimize GC bias**, giving uniform exome coverage.

Plus, **QIAseq Human Exome** provides many reads per position, delivering WGS-quality variant data without the expense.

WES with QIAseq

QIAseq Human Exome reduces sequencing needs by **50%**, allowing more samples per run but produces just **~5 Gb** of data.

As a result, QIAseq Human Exome reduces costs by **30–50%**.

QIAseq Human Exome was built with researchers' needs in mind

6 sample types supported: gDNA derived from whole blood, cells, tissue, saliva, FFPE and cfDNA

1-day workflow, compatible with automation and scalable

50% reduction in sequencing costs

33% less time than competitors

References

- 1. Wang, Q. et al. (2017) Novel metrics to measure coverage in whole exome sequencing datasets reveal local and global non-uniformity. Sci. Rep. 7, 885.
- 2. Chilamakuri, C.S., et al. (2014) Performance comparison of four exome capture systems for deep sequencing. BMC Genomics. 15, 449.

Trademarks: QIAGEN®, Sample to Insight®, QIAseq® (QIAGEN Group). Registered names, trademarks, etc., used in this document, even when not specifically marked as such, are not to be considered unprotected by law. PROM-17861-001 1123892 02/2021 © 2021 QIAGEN®, all rights reserved.

QIAseq Human Exome Kits are intended for molecular biology applications. These products are not intended for the diagnosis, prevention, or treatment of a disease.

Ordering www.qiagen.com/shop | Technical Support support.qiagen.com | Website www.qiagen.com

Sample to Insight